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[1] We develop a Bayesian model to invert surface seismic refraction data with depth
constraints from boreholes for characterization of aquifer geometry and apply it to seismic
and borehole data sets collected at the contaminated Oak Ridge National Laboratory site
in Tennessee. Rather than the traditional approach of first inverting the seismic arrival times
for seismic velocity and then using that information to aid in the spatial interpolation
of wellbore data, we jointly invert seismic first arrival time data and wellbore‐based
information, such as depths of key lithological boundaries. We use a staggered‐grid finite
difference algorithm with second‐order accuracy in time and fourth‐order accuracy in
space to model seismic full waveforms and use an automated method to pick the first arrival
times. We use Markov Chain Monte Carlo methods to draw many samples from the joint
posterior probability distribution, on which we can estimate the key interfaces and their
associated uncertainty as a function of horizontal location and depth. We test the developed
method on both synthetic and field case studies. The synthetic studies show that the
developed method is effective at rigorous incorporation of multiscale data and the Bayesian
inversion reduces uncertainty in estimates of aquifer zonation. Applications of the approach
to field data, including two surface seismic profiles located 620 m apart from each other,
reveal the presence of a low‐velocity subsurface zone that is laterally persistent. This
geophysically defined feature is aligned with the plume axis, suggesting it may serve as
an important regional preferential flow pathway.
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1. Introduction

[2] Characterization of aquifer geometry is important for
understanding and predicting subsurface flow and transport, as
is needed for optimal management of water resources and
environmental contaminants. However, such characterization is
challenging due to the disparity of scales and mechanisms that
contribute to the overall system flow behavior. Conventional
techniques for characterizing subsurface flow properties typi-
cally rely on wellbore‐based techniques, such as core sample
analysis or pumping, slug, and flowmeter tests [e.g., Butler
et al., 2005]. Unfortunately, the small‐scale data obtained
using only wellbore‐based methods may not provide infor-
mation about key controls on overall system flow behavior.
[3] Estimation of large‐scale flow properties directly

from small‐scale measurements has been recognized as one
of critical unresolved problems in groundwater hydrology
[Anderson, 2007]. In a recent special issue dedicated to the

future of hydrology, DeMarsily et al. [2005] stated that
“subsurface imaging is obviously an asset, as it can help
describe the geometry of the heterogeneous system.”
Suggesting avenues for future research, they continued that
“Geophysics could be used more systematically; so far,
good examples of a successful use of geophysical images in
the treatment of practical problems where heterogeneity plays
a role is lacking.”
[4] Although not yet well developed for routine use to

treat practical problems, several examples provided by Rubin
and Hubbard [2005] exemplify the state of the research in
hydrogeophysics, illustrating how geophysical methods have
been used to improve our understanding of subsurface het-
erogeneity and predictions of flow. However, the majority of
quantitative hydrogeophysical studies have been performed
at the local scale (∼10 m), where the scale disparity between
direct (wellbore) and indirect (geophysical) measurements is
often not significant. In discussing hydrogeophysical frontier
research areas, Hubbard and Linde [2010] described the
pressing need to develop approaches for quantifying sub-
surface heterogeneity over scales relevant to the management
of contaminant plumes and water resources. They reviewed
recent studies that illustrate the potential of surface geo-
physical methods for larger‐scale subsurface characterization
and monitoring, which include the use of: seismic reflection
for inferring 3‐D subsurface stratigraphy at a contaminated
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site [Addison et al., 2009], electrical resistivity methods for
quantifying seasonal variations in subsurface moisture con-
tent [Miller et al., 2008], and electromagnetic methods for
monitoring freshwater‐saltwater dynamics [Falgas et al.,
2009].
[5] The seismic refractionmethod is an appealing approach

for characterizing subsurface aquifer geometry, because it is
relatively inexpensive and can rapidly provide information
about subsurface variability over large areas. The method
has been used successfully for mapping the distribution of
lithological layers in environments associated with petroleum
exploration, mining, civil engineering, and deep crustal
studies. Seismic refraction methods work by Snell’s law,
which governs the refraction of sound waves or light rays
across the boundary between layers of different physical
properties. If the velocity of the seismic waves increases with
depth, the wave will be directed back to the ground surface
where it can be recorded by geophones. Assessment of the
travel times of the recorded refracted waves can provide
information about the location of interfaces between units
having different physical properties and are thus potentially
useful for estimating groundwater aquifers that can be
defined by one or more distinct units [Haeni, 1986].
[6] However, two problems exacerbate the use of

surface seismic methods for delineating subsurface geome-
try. The first one is associated with the relative placement
of low‐velocity layers in the subsurface. In deeper subsurface
environments, such as those common to ore mining or
petroleum reservoirs, the consolidation of the geological
layers (thus its seismic velocity) typically increases with
depth. Under these conditions, the seismic waves are well
behaved in that some energy is successively refracted to the
subsurface while some continues to penetrate deeper as was
described above. In the near subsurface, however, lower‐
velocity layers can be situated between layers having higher
velocities. As described by Chen et al. [2006], low seismic
velocity regions in shallow environments can be indicative
of regions that are less consolidated, typically having higher
porosity and hydraulic conductivity than surrounding layers.
Traditional imaging of surface seismic refraction data sets,
which rely on raypath assumptions, is challenging in these
environments and thus the delineation of such low‐velocity
zones is subject to a large degree of uncertainty [Sheehan
et al., 2005a].
[7] The second key problem in using surface seismic

methods to quantify subsurface heterogeneity is associated
with the scale disparity between wellbore and geophysical‐
based measurements. Traditionally, a “two‐step” procedure
is performed, whereby the surface seismic refraction arrival
times are inverted to obtain estimates of the distribution of
subsurface seismic velocity along 2‐D cross sections, which
are then compared with wellbore data collected along the
cross section. The 2‐D velocity estimates are then used to
aid in the interpolation of wellbore‐based information (such as
interfaces between key units). However, traditional inversion
of surface seismic refraction data sets usually leads to a
smoothed velocity distribution in the subsurface (rather than
to distinct zones that can readily be identifiedwith lithological
changes). Additionally, the estimated distribution of seismic
velocity can be significantly influenced by inversion choices
made by the geophysicist [Sheehan et al., 2005b].
[8] In this study, we develop a Bayesian model to jointly

invert surface seismic refraction data with constraints avail-

able from wellbores and other sources of information. We
first test the developed method using a synthetic data set and
then apply it to the data sets collected from the Oak Ridge
National Laboratory Integrated Field Research Center (ORNL
IFC) for quantifying subsurface architecture at the scale that
may impact regional flow and contaminant transport. Our
method is distinct from currently used seismic refraction
inversion methods in the following four aspects. First, we
parameterize the inverse problem directly in terms of aquifer
geometry, such as the interface between key geological layers,
instead of the common approach of inverting for the distribu-
tion of seismic velocity. Second, we formulate the inverse
problem within a Bayesian framework, which allows for
incorporation of multisource and multiscale information (such
as interface and water table locations) in a coherent and sys-
tematic way. Third, we adopt a more accurate forward seismic
wave propagation model, i.e., the staggered‐grid finite differ-
ence method with second‐order accuracy in time and fourth‐
order accuracy in space [Levander, 1988], to numerically
simulate seismic full waveforms with subsequent automated
travel time picking. Finally, we useMarkov chainMonte Carlo
(MCMC) methods to explore the resulting joint posterior
probability distribution function and obtain not only the esti-
mates of aquifer geometry but also associated uncertainty
information.
[9] The remainder of this paper is organized as follows.

Section 2 describes the ORNL IFC site and available infor-
mation. Section 3 describes the Bayesian framework and
MCMC sampling approach for estimating architecture using
surface seismic refraction and wellbore data sets. In section 4,
we test the approach through synthetic case studies and
evaluate the benefit of wellbore data sets for constraining
the inversion. We apply the developed method to surface
seismic refraction and wellbore data sets collected at the
ORNL IFC in section 5. Discussion and conclusions are
provided in section 6.

2. Oak Ridge National Laboratory Integrated
Field Research Center

2.1. Site Information

[10] The Oak Ridge National Laboratory, located near
Knoxville Tennessee (Figure 1a), hosts one of the Integrated
Field Research Centers (IFC) of the Subsurface Biogeo-
chemical Research (SBR) Program of the U.S. Department
of Energy (DOE). The IFC site includes contaminated and
uncontaminated background areas, both located in Bear
Creek Valley, west of the Oak Ridge Y‐12 National Security
Complex [Watson et al., 2005]. At the ORNL IFC, a
groundwater plume exists that originated from the former
S‐3 Waste Disposal Ponds.
[11] The Ponds received 3.2 × 108 L of acidic, nitrate, and

uranium‐bearing waste for 32 years until the pond contents
were neutralized, denitrified, and capped in 1988 [Watson
et al., 2004]. Although the ponds are capped, the vast
majority of contaminant mass has migrated away from the
ponds into the underlying geologic media where it has pre-
cipitated or adsorbed onto the solid phase or migrated into
the matrix via diffusion, creating an extensive secondary
source of contamination [Jardine et al., 2002]. Groundwater
interaction with this secondary source of contamination has
resulted in a groundwater plume that extends over 4 km down
the Bear Creek Valley. Total dissolved solid (TDS) content
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of the groundwater plume is greater than 40,000 mg/L.
Contaminants in the groundwater plume also contain ele-
vated levels of nitrate (up to 40,000 mg/L), sulfate (up to
3000 mg/L), uranium (up to 50 mg/L), technetium‐99 (up
to 40,000 pCi/L), and tetrachloroethylene (up to 9 mg/L)
[U.S. Department of Energy (USDOE), 1997; Watson et al.,
2005]. Located within a humid regime, the subsurface
transport processes are likely influenced by large annual
rainfall inputs (>1400 mm/y).
[12] The site geology at the ORNL IFC is quite complex.

Figure 1b shows a schematic structure that mimics the
topography of Bear Creek Valley, with Appalachian For-
mations units dipping in the Valley and Ridge Province at a
37° angle to the southwest and aligned parallel to the valley
[Fienen, 2005]. The primary direction of contaminant trans-
port parallels the strike of bedding planes and the axis of
valley groundwater and tends to be constrained within dis-
crete packages of stratigraphic layers. The site is underlain
by the Nolichucky Shale, although the top 4–15 m has
weathered into unconsolidated saprolite that maintains rem-
nant bedding structure. To a depth of approximately 10m, the
saprolite is clay‐rich and has a low permeability [Watson
et al., 2005]. Between the shallow, low‐permeability clay‐
rich saprolite and deeper, more competent bedrock is a tran-
sition zone that has been weathered to varying degrees. Some
areas of the site were excavated and filled during facility
construction activities. The fill can be 0–7 m thick with a
large fraction consisting of poorly sorted limestone gravel
mixed with lesser native saprolite. Groundwater flow near
the S‐3 Ponds source area is thought to occur within both
the shale/saprolite and the fill [Watson et al., 2005].

2.2. Previous Hydrogeological Characterization
at the ORNL IFC

[13] Many types of information have been collected from
ORNL IFC site over time and across a range of spatial
scales to characterize the subsurface hydrogeology, including

borehole pumping and flowmeter tests [Fienen et al., 2004],
tracer test experiments [Luo et al., 2006; Fienen et al.,
2006], crosswell geophysical tomographic surveys [Chen
et al., 2006], and surface seismic refraction and electrical
methods [Watson et al., 2005; Sheehan et al., 2005a]. Many
of the wells were installed using push probe techniques; the
depth of penetration of those wells is a function of the
competency of the subsurface units and thus can also
potentially be useful for subsurface characterization.
[14] Interpretations of both hydrological and geophysical

data have suggested that the transition zone, described in
section 2.1, serves as a preferential fast flow path. At the
local scale (∼10 m), Fienen et al. [2004] and Luo et al.
[2006] used pumping and flowmeter tests, together with
field‐scale tracer test data collected near the S3 ponds, to
interpret a fast flow path in the subsurface that appeared to
control the overall hydraulic behavior of the system. At the
same site, Chen et al. [2006] developed and implemented a
joint stochastic inversion approach that used crosswell
seismic travel times and borehole flowmeter test data to
estimate the probability of encountering high hydraulic
conductivity zones. They found that the joint inversion was
successful at the local scale for identifying a high hydraulic
conductivity zone (located between 10.5 and 13.5 m), which
was coincident with a seismic low‐velocity zone. Compari-
son of their obtained hydraulic zonation estimates with the
tracer and biostimulation experimental results [e.g.,Wu et al.,
2006] suggested that the estimation approach was very
effective in defining the geometry of preferential flow zones
at the local scale.
[15] Watson et al. [2005] used the surface seismic and

electrical data sets, collected adjacent to the S‐3 source
ponds, to guide the installation of wellbores used for bio-
remediation tests. In their study, the seismic refraction travel
times were first inverted for seismic velocity images using
conventional deterministic methods; the velocity gradients
inferred from the inversion results were used to indicate
contrasts in lithology or rock competency. Our study is

Figure 1. (a) Location of the Oak Ridge National Laboratory Integrated Field Research Center
(ORNL IFC) site (USDOE). (b) Geological structure at the Oak Ridge site [after Watson et al., 2005].
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based on the premise that inversion of the seismic refraction
data with constraints from those wellbores may provide sig-
nificant information for characterizing aquifer geometry
at the large scale. We test this concept by developing
and implementing a Bayesian‐based method using the two
seismic refraction lines (i.e., NT‐2 and S3 pond) as shown in
Figure 2.

3. Bayesian Model for Aquifer Geometry
Estimation

[16] In this section, we develop a Bayesian model based
on the ORNL IFC site information. Bayesian methods
provide a coherent and practical way to combine multiple
sources of information; they have been successfully used in
many applied fields as shown by Gilks et al. [1996]. In this
study, we estimate aquifer geometry from seismic refraction
data and borehole‐based information. Within the Bayesian
framework, the seismic refraction data are connected to
unknown parameters (such as lithological interfaces) through
likelihood functions and the borehole‐based data affect the
unknown parameters through prior distributions. The posterior
estimates of unknown parameters are combination of both the
seismic refraction data and the borehole‐based information.

3.1. Parameterization of the Inverse Problem

[17] Since our focus in this study is on characterization of
aquifer geometry in an environment where we expect the
presence of a fast preferential flow path, we consider our 2‐D
velocity model as a superposition of three level submodels,
each of which includes variable quality information from
different sources. The first‐level velocity submodel is the one
based on gross hydrostratigraphy; it can be reliably derived
from information, such as surface topography, groundwater
table, and the thickness of man‐emplaced fill (or the soil
layer). The second‐level submodel is the vertical global
gradient of seismic velocity, which can be derived from the
average of all the borehole velocity profiles, from assessing
the conventionally inverted seismic refraction profile or from
the joint inversion process. The third‐level submodel is our
primary focus, referred to as inversion submodel; this is the
aquifer geometry that we strive to estimate.
[18] On the basis of the conceptual model of the ORNL

IFC site [Watson et al., 2004], we divide the inversion sub-
model into three distinct zones (Figure 3): (1) weathered
saprolite (or unconsolidated bedrock), (2) consolidated bed-
rock, and (3) transition zone located between the saprolite and
the bedrock. As shown in Figure 3, we strive to estimate

Figure 2. Seismic refraction survey lines and wellbores at the NT2 and S3 pond areas.

Figure 3. Two‐dimensional cross section with inversion parameters.
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seismic velocity (v1, v2, and v3) in each zone, interface
locations (xi, i = 1,2,…,n) between the weathered and con-
solidated zones, and thickness (yi, i = 1,2,…,n) of the less
competent zone as a function of horizontal locations, where n
is the total number of locations. The use of zonation concepts
for characterizing aquifer geometry has also been used by
Hyndman and Harris [1996] for inverting crosswell seismic
travel times. To reduce the total number of unknowns, we
choose to estimate parameters at 5 m intervals, which are
referred to as pilot points. For seismic forward simulation, we
linearly interpolate values at locations between those pilot points.
[19] The data used in the Bayesian model are the observed

seismic refraction first arrival times for many source‐receiver
pairs. Let dij

obs be the first arrival time recorded at the jth
receiver from the ith source. Letms and mr be the total number
of sources and receivers, respectively. For ease of description,
we let vectorD represent the seismic refraction data for all the
source‐receiver pairs, arranged first by sources and then by
receivers. That is, D = (d11

obs, d12
obs,…, d1mr

obs,…, dms1
obs, dms2

obs,…,
dmsmr

obs )T, where the superscript denotes observation or mea-
surements, the subscripts denote source‐receiver pairs, and
symbol T represents the transpose of the vector. We also
use depth of refusal or penetration information to con-
strain unknown variables through prior models as given in
section 3.3.
[20] We add two more unknown variables in this model

besides those unknowns shown in Figure 3 to describe pos-
sible discrepancies between the recorded and numerically
calculated seismic first arrival times. The first parameter is the
bias between the first arrival time data and our automatic
picking from the numerical forward modeling of the first
arrival time. The parameter may also account for the sys-
tematic difference in picking first arrival time from real
seismograms. The second parameter is the standard deviation
of random measurement errors. Since the spatial correlation
of the interfaces and thickness and the background velocity
gradient are also often unknown, we include them in the
estimation. Consequently, we can develop the following
Bayesian model for the inversion,

f X;Y;V; �x; �y; g; s; �jD
� � / f DjX;Y;V; g; s; �ð Þ

� f X;Y;V; �x; �y; g; s; �
� �

; ð1Þ

where X = (x1, x2, …, xn)
T, Y = (y1, y2, …, yn)

T, and V =
(v1, v2, v3)

T represent the interface locations, the thickness
of low‐velocity zones, and block seismic velocity, respec-
tively. Variables lx and ly represent the correlation lengths of
the interface locations and the thickness of low‐velocity
zones; variable g represents the background velocity gradient.
Variable s represents the possible constant bias between
the true and the picked first arrival times, and variable s
represents the standard deviation of measurement errors. The
first term on the right side of equation (1) is referred to as the
likelihood function, which is the link between the measured
travel times and unknown variables; the second term is
referred to as the prior distribution function, which sum-
marizes all information besides the seismic refraction data.

3.2. Likelihood Model of Seismic First Arrival Times

[21] We assume that the first arrival times picked from
seismograms include an unknown constant bias and random

noise. Let Gij be the first arrival times calculated from the
staggered‐grid numerical forward model for the ith source
and jth receiver. Let "ij be the random error for the ith source
and the jth receiver pair. Thus, we have

dobsij ¼ Gij X;Y;Vð Þ þ sþ "ij: ð2Þ

We assume that error "ij has a t distribution with a given
freedom of v (i.e., v = 4), mean of zero, and standard
deviation of s. The reason for choosing t distribution rather
than the commonly used Gaussian distribution is that t dis-
tribution offers a more robust and realistic model of mea-
surement errors because it has heavier tails.
[22] We model the joint likelihood function of the random

errors for all the source‐receiver pairs by considering them
dependent but uncorrelated rather than independent as we
used in other studies [Chen et al., 2006, 2008, 2009].
Consequently, the likelihood function has a multivariate t
distribution with the following probability density function,
as given by [Kotz and Nadarajah, 2004]

f DjX;Y;V; g; s; �ð Þ / G � þ 1ð Þ=2ð Þ
G �=2ð Þ�1=2 �1=2�ð Þmrms

� 1þ 1

��2

Xms

i¼1

Xmr

j¼1

dobsij � Gij X;Y;V; gð Þ � s
� �2 !� �þmsmrð Þ=2

;

ð3Þ

where G represents the gamma function. The multivariate t
likelihood model given in equation (3) has advantages over
a multivariate Gaussian likelihood model based on the
independence assumption of measurement errors in dealing
with real data sets in practice as shown by many studies
[Kelejian and Prucha, 1985; Joarder and Ahmed, 1996].
The multivariate t distribution can be interpreted as a scale
mixing of multivariate Gaussian distribution using a hier-
archical model [Pinheiro et al., 2001; Marchev and Hobert,
2004]. It is the distribution of a random vector created by
dividing each component of a centered multivariate Gaussian
random vector by a common independent gamma‐distributed
random variable [Kotz and Nadarajah, 2004].

3.3. Prior Models and Depth Constraints

[23] The prior distribution is determined from information
other than seismic refraction data. We can simplify the prior
model in equation (1) by assuming that the location of
interfaces between unconsolidated and consolidated bedrock,
the thickness of low‐velocity zones, the block seismic
velocity, the velocity gradient, the bias, and the standard
deviation of unknown measurement errors are independent.
This assumption is reasonable for this estimation problem.
Consequently, we can write the prior distribution function
as follows:

f X;Y;V; �x; �y; g; s; �
� � ¼ f Xj�xð Þ f Yj�y

� �
f �xð Þ

� f �y

� �
f Vð Þ f gð Þ f sð Þ f �ð Þ: ð4Þ

We specify prior models for each vector in equation (4)
differently, depending on the characteristics of those vari-
ables. For the unknown bias, we assume it has the uniform
distribution on the range between −3 and 3 ms based on
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experience in first arrival time picking. For the standard
deviation of errors, we assume its prior distribution has a
uniform distribution, as suggested by Gelman [2006], with a
range between 0.1 and 10 ms. For spatial correlation, we
use the exponential variogram and assume the two correlation
lengths are uniformly distributed between 1 and 20 m. Those
assumptions are reasonable for the site based on other studies
[e.g.,Chen et al., 2006]. For the background velocity gradient,
we calculated the averaged gradient (82m/s permeter depth) of
the velocity profile given byWatson et al. [2005] and obtained
from traditional inversionmethods.We set the prior range from
60 to 100 m/s per meter depth.
[24] We specify the prior models of the interface locations

and thickness of the low‐velocity zones X and Y by taking
account for both their bounds and spatial correlation. We
assume that they have truncated multivariate Gaussian dis-
tributions, i.e., X ∼ Ind(X 2 DX)MVN(mX, SX), and Y ∼
Ind(Y 2 DY)MVN(mY, SY), where Ind() is the indicator
function, taking the value of one if the condition is satisfied
and zero, otherwise; MVN() is the multivariate Gaussian
distribution with mean vector mX or mY and variance‐
covariance matrix SX or SY. Symbols DX and DY are the
allowed domains of vector X and Y, respectively.
[25] We define above vectors and matrices through

specification of marginal bounds as done by Chen et al.
[2006]. Let (lxi, uxi) and (lyi, uyi) be the bounds of the
interface location and thickness of low‐velocity zones at the
ith pilot point. We define the ith component of mean vectors
mX and mY by mxi = (lxi + uxi)/2 and myi = (lyi + uyi)/2,
respectively. We define the ith marginal standard deviation
of vectors X and Y by the quarter of their corresponding
interval widths, i.e., sxi = (mxi − lxi)/4 and syi = (myi − lyi)/4.
To account for the spatial correlation of each component of
vectors X and Y, we use an exponential variogram with
unknown correlation lengths lx and ly. The variance‐
covariance matrices matrix SX and SY are determined by
both the marginal standard deviations and the correlation
matrices.
[26] At the control points where wellbores are available,

we can use data from those wells to constrain prior ranges.
At the ORNL site there are generally two types of wells:
(1) shallow wells that have been drilled in the last decade
to provide information on the lower bounds of the interface
locations from geological descriptions; (2) sparse, older,
but deeper wells that provide information on both interface
and thickness of low‐velocity zones. For a shallow well, if
zk
ref represents the depth of the well that corresponds to the
kth control point, we let lxk = zk

ref. For a deep well, suppose
zk
deep and dk

deep be the interface location and thickness of
low‐velocity zones, we can assign lxk = (1 − a) zk

deep, uxk =
(1 + a) zk

deep, lyk = (1 − a) zk
deep, and uyk = (1 + a) zk

deep.
Without loss of generality, we assume a = 0.1 in this study.

3.4. Markov Chain Monte Carlo Sampling Methods

[27] We cannot obtain analytical solutions of the inverse
problem defined by equation (1) because the joint posterior
probability distribution function involves numerical forward
modeling of seismic first arrival times and because the
likelihood function given in equation (3) is a nonlinear
function of the unknown parameters. Therefore, we use
MCMC sampling strategies to draw many samples from the
posterior joint distribution.

[28] To implement MCMC sampling strategies, we first
need to derive the conditional probability distribution for
each type of unknowns given all other unknowns by dropping
those terms that are not directly related to it in equation (1).
For example, for unknown vector X, we can have f (X∣·) /
f (D∣X,Y,V,g,s,s) f (X∣lx). Similarly, we can obtain con-
ditional probability distributions of other unknown vectors.
We then need to draw samples using block‐wise slice [Neal,
2003] orMetropolis‐Hastings [Metropolis et al., 1953;Hastings,
1970] sampling methods. Finally, we use the method devel-
oped by Gelman and Rubin [1992] to check the convergence
of Markov chains.

4. Synthetic Case Studies

[29] In this section, we apply the developed Bayesian
model to synthetic seismic refraction data generated by
mimicking conditions at the ORNL IFC site. We use the
synthetic study for two purposes: (1) to check if the developed
Bayesian model and its associatedMCMC sampling methods
are effective for aquifer geometry estimation and (2) to
investigate the effects of depth constraints on the estimation
under relative simple conditions.

4.1. Synthetic True Model and Survey Geometry

[30] We developed a synthetic 2‐D velocity model based
on a conceptual model of the seismic velocity distribution
from previous research [Watson et al., 2005; Chen et al.,
2006]. As shown by Figure 4a, the 2‐D cross section spans
130 m and extends to a depth of 25 m.We divide it into 520 ×
100 intervals (i.e., m = 520, n = 100, and Dx = 0.25m, Dz =
0.25m). On the basis of typical geological structure at this site
(see Figure 1b), we divide the cross section into four layers:
(1) shallow topsoil with velocity of 600 m/s, (2) human‐
placed fill with velocity of 1000 m/s, (3) weathered bedrock
(saprolite) with velocity of 1200 m/s, and (4) consolidated
bedrock with velocity of 1400 m/s. Between the unconsoli-
dated and consolidated bedrock is a low‐velocity zone of
800 m/s. We add a gradient of 82 m/s per meter to the above
2‐D block velocity model. To reduce the total number of
unknowns, we pick 27 pilot points that are evenly spaced
along the x axis with spacing of 5 m.
[31] We perform a forward simulation using the staggered‐

grid finite difference model to obtain seismic refraction travel
time data. We use a Delta function pulse as input to the
numerical system because it generates sharp first arrivals for
which the automatic picking of first arrivals works robustly.
Although the Delta pulse leads to contaminated waveforms
by numerical dispersion in later arrivals, as we only use first
arrival time in this study, there is no effects of the numerical
artifacts [Korneev et et al., 2008]. We follow similar acqui-
sition procedures used in the field to collect real data. There
are 64 shot sources, starting from x = 1 m with a spacing of
2 m, and 128 receivers, starting from x = 1 m with a spacing
of 1 m. Each shot source and receiver are located in depth
of 0.5 m. We assume that there are four boreholes nearby the
survey lines. Two of those wells (x = 10 m and x = 110 m) are
shallow and provide information about the depth of the
interface between unconsolidated and consolidated bedrock;
the other two wells (x = 50 m and x = 90 m) are deep and
provide depth information on both the interface and the
thickness of less competent zones.
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Figure 4. (a) Synthetic true velocity model. (b) Estimated velocity model using the stochastic inversion
method.
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[32] We generate synthetic first arrival times using the
numerical forward model. We assume that there is a constant
of 1 ms bias, which accounts for possible differences between
the automatically and manually pickings of first arrival times.
Moreover, we add Gaussian random noises with zero mean
and 1 ms standard deviation. The added bias and random
noises are reasonable for the Oak Ridge site data sets based
on the error studies conducted by Gaines et al. [2008].

4.2. Stochastic Inversion of Synthetic Data Sets

[33] We invert the synthetic seismic data as described
above using MCMC sampling methods for wide priors
except at locations where wellbores are available. The prior
ranges of three block velocities are [1000, 1400], [600,
1000], and [1200, 2000] m/s, respectively; the prior ranges
of interface locations and thickness of the low‐velocity zones
are [8, 16] m and [0, 6] m. Comparison with the true synthetic
model shows that block seismic velocities can be accurately
estimated from the inversion because seismic first arrival
times are mostly sensitive to changes in those parameters.
This implies that when we invert field data for aquifer
geometry, we can use wide prior ranges for block seismic

velocity and the inversion results will not be very sensitive
to the specification of the priors.
[34] The locations of interfaces between unconsolidated

and consolidated bedrock can be resolved reasonably well.
As shown in Figure 4b, we can see that the medians of the
estimated interface locations (white dashed curves) are close
to their corresponding true values, even at locations near
both edges where seismic wave coverage is very low. This is
because we assume that the interface locations are spatially
correlated. However, as shown in Figure 5, uncertainty asso-
ciated with the estimation is high, depending on whether we
use or not use depth constraints.
[35] The performance of the stochastic inversion for esti-

mating the thickness of low‐velocity zones varies. As shown
in Figure 6, the inversion method provides good estimates
of thickness of low‐velocity zones in the middle locations
(40 m < x < 100 m) along the x axis, but poor estimates at
edge locations (x < 40 m or x > 100 m). The discrepancy is
caused by a difference in the distribution of seismic waves.
Similar to the estimates of interface locations, uncertainty in
the estimates of the thickness is also large. The effects of
depth constraints from wellbores on the interface and thick-
ness will be further addressed in the subsequent section.

Figure 5. Estimated interface locations (a) with depth constraints and (b) without depth constraints.
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4.3. Effects of Depth Constraints on Estimation

[36] We invert the synthetic seismic data with and without
wellbore information to investigate the effects of depth
constraints on the estimation of aquifer geometry. Figures 5a
and 5b compare the estimated medians and 95% predictive
intervals of interface locations between unconsolidated and
consolidated bedrock with and without depth constraints.
We can see that the medians of both inversions are close to
the true interface locations with the root mean squares (RMS)
of difference from the true values of 0.31 m with depth
constraints and of 0.32 mwithout depth constraints. Since the
estimated medians of interface locations with depth con-
straints are very close to those without depth constraints, our
focus here is on the comparison of uncertainty associated with
the constrained and unconstrained estimation.
[37] We can see that overall the estimates of interface

locations with depth constraints (Figure 5a) have smaller
uncertainty than those without depth constraints (Figure 5b).
The averaged width of highest probability domains (HPDs)
with depth constrains has a value of 1.49 m while that
without depth constraints has a value of 1.74 m. To see the

detailed effects of depth constraints, we also show depth
constraints at the four borehole locations (black vertical
dashed lines). We found that at locations near the edges
(x = 10 m or x = 110 m), the constraints reduce the uncer-
tainty significantly and at locations close to the middle
(x = 50 m or x = 90 m), the constraints reduce uncertainty
slightly. This is because at locations in the middle, we
have more wave coverage and thus the interfaces are better
determined from seismic refraction data alone.
[38] Figures 6a and 6b show the thickness and location of

the low‐velocity zones, where the solid lines with circles are
the true thickness and the solid and dash‐dotted lines are the
medians and the lower and upper bounds of 95% HPDs. We
can see that in the location from x = 20 m to x = 100 m, the
medians of both inversions are close to the true thickness
with the root mean squares of difference from the true values
of 0.42 m with depth constraints and of 0.40 m without
depth constraints. Similar to the interface location, we com-
pare uncertainty associated with the constrained and uncon-
strained estimation in the range and find that the averaged
width of thickness with depth constraints (1.32 m) is much
smaller than that without depth constraints (1.72 m). At the

Figure 6. Estimated thickness of low‐velocity zones (a) with depth constraints and (b) without depth
constraints.
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two locations (x = 50 m and x = 90 m), where depth con-
straints are available, uncertainty in the estimates of thickness
with depth constraints are significantly smaller than that
without depth constraints.
[39] Different from the interface location, the medians of

estimated thickness with and without depth constraints are
significantly away from the corresponding true values at
locations near both ends (i.e., x < 20 m or x > 100 m). This is
partly because for the given survey geometry, we have much
less wave coverage in the areas than that in the middle areas.
Therefore, depth constraints at locations near edges play a
far more important role than at locations in the middle area
for improving estimates of thickness. Another reason is
that the resolution of seismic refraction surveys typically
decreases with increasing depth. For example, the RMS of
misfits is about 0.3 m for interface location estimation and
0.4 m for thickness estimation. This again shows that the
depth constraints from deeper wellbores are more important,
especially at locations near edges.

5. Inversion of ORNL IFC Field Data Sets

[40] We apply the Bayesian model developed in section 3
to field seismic refraction and wellbore data sets collected
down gradient in the NT‐2 area and adjacent to the S3
ponds (see Figure 2). These profiles are located perpendicular
to groundwater flow direction and are separated by 620 m.
Although inversion of data collected from the S3 survey line
using conventional deterministic methods indicated the pos-
sible existence of a low seismic velocity zone along the cross
section [Sheehan et al., 2005b; Watson et al., 2005], given
uncertainty in the two‐step conventional approach described
in section 1, the estimated location and geometry of the fast
flow path zone are qualitative and subject to a large degree of
uncertainty. To quantitatively estimate the aquifer geometry
and associated uncertainty information, we apply the devel-
oped stochastic inversion approach to the seismic refraction
data collected from both survey lines with depth constraints
from local environments.

5.1. Inversion Using Data From the NT2 Survey Line

5.1.1. Survey Location and Geometry
[41] On the NT2 area, the ground surface decreases from

the south (x = 0 m and elevation = 298 m) to the north (x =
120 m and elevation = 296 m). A total of 55 sources were
used, starting from x = 0.5 m with increment of 4 m. A total
of 221 receivers (or geophones) were used, starting from
x = 0 m with increment of 0.5 m. We consider a rectangle
inversion domain with a lateral extent of 120 m from the
south to the north and a vertical extent of 25 m from elevation
of 300 m to elevation of 275 m. For forward simulation, we
use the same grid size for both horizontal and vertical direc-
tions, which is equal to 0.25 m. This renders 480 grids along
the lateral direction and 100 grids along the vertical direction.
5.1.2. Depth Constraints From Wellbores
and Other Types of Information
[42] Several wellbores are located near the NT2 survey

profile as shown in Figure 2, and four of them are within the
horizontal distance of 22 m from the profile. Wellbore
GW828 has a horizontal distance of 18 m from the survey
line and the total penetration depth of 51 m. Weathered
rock (shale) was encountered at the depth of 2.3 m and
fresh rock at the depth of 11.8 m [USDOE, 1995]. Wellbores

FW600, FW601, and FW602 are also nearby and they are
all shallow. The depths of refusal (or penetration) for well-
bores FW600, FW601, and FW602 are 9.0, 6.1, and 10.2 m,
respectively. Since FW600 and FW601 are very close, with
a distance of 1.6 m, we only use information from wellbore
FW600 in the inversion. The depths encountered fresh rock
are likely beyond those depths.
[43] We also use information from the conventional

inversion results [Gaines et al., 2008] to build a prior velocity
model for shallow subsurface. The three‐layer background
block velocity model has fixed thickness for each layer,
which includes a very thin layer with a thickness of 0.5 m
and a constant velocity of 300 m/s, a topsoil layer with a
thickness of 1.0 m and a constant velocity of 500 m/s, and an
unsaturated layer above the groundwater level with a thick-
ness of 2.4 m and a constant velocity of 800 m/s.
5.1.3. Inversion of Seismic Refraction Data
[44] We invert seismic refraction data under several dif-

ferent conditions. The prior ranges of the bias, the standard
deviation of measurement errors, the spatial correlation
lengths, and the background gradient are given in section 3.3.
The prior ranges of three block velocity are the same as those
used in the synthetic studies for the Bayesian model with a
background model, and they are [1000, 3000], [1000, 3000],
and [2000, 4500] m/s for the Bayesian model without a
backgroundmodel. The prior ranges of the interface locations
are [9, 18] m in depth; the prior range of the thickness is
[0, 3] m for the narrow‐bound case and [0, 6] m for the wide‐
bound case.
[45] We first invert seismic refraction data using the

narrow bounds for thickness without a background gradient
model. Figure 7 shows the 2‐D velocity model calculated
using the estimated medians of unknown parameters with
depth constraints (Figure 7a) and without depth constraints
(Figure 7b). Both images show the existence of two major
low‐velocity zones on the cross section: one is around x =
50 m and the other is around x = 80 m. The interface locations
are also very similar on the right side (x > 90 m). However,
the estimated aquifer geometry at the south end (x < 40 m) in
Figure 7b is significantly different from that in Figure 7a
due to the lack of depth constraints from wellbores. At
wellbore GW828, the estimated interface at the wellbore
location obtained from inversion with depth constraints is
consistent with the observed depth that fresh bedrock was
encountered (black circle in Figure 7a), but that obtained
from inversion without depth constraints much shallower
than the observation.
[46] The Bayesian model allows us to quantify uncertainty

associated with the parameter estimation. Figure 8 shows
the medians and the lower and upper bounds of 95% HPD
for the interface locations (Figure 8a) and for the thickness
(Figure 8b). We can see that uncertainty in the interface is
smaller than that in thickness relative to their corresponding
prior ranges ([9, 18] m for the interface and [0, 3] m for the
thickness) because the resolution of seismic refraction survey
typically decreases with increasing of depth. From Figure 8a,
we can also see that uncertainty in the interfaces at the loca-
tions with depth constraints (i.e., x = 25, 30, and 60 m) is
significantly smaller than that without depth constraints.
5.1.4. Effects of Prior Information on Estimation
[47] We vary the prior ranges of several types of unknown

parameters on which we have less controls to investigate the
effects of prior information on the estimation. We inverted
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Figure 7. Estimated 2‐D profile along the NT2 survey line (a) with depth constraints and (b) without
depth constraints.
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the seismic refraction data under the following six different
situations: (1) using the narrow thickness bounds with depth
constraints and without a background gradient model, referred
to as “narrow‐depth‐block”; (2) using the narrow thickness
bounds without depth constraints and a background gradient
model, referred to as “narrow‐nodepth‐block”; (3) using the
narrow thickness bounds with depth constraints and a
background gradient model, referred to as “narrow‐depth‐
gradient”; (4) using the wide thickness bounds with depth
constraints and without a background gradient model, referred
to as “wide‐depth‐block”; (5) using the wide thickness bounds
without depth constraints and a background gradient model,
referred to as “wide‐nodepth‐block”; (6) using the wide
thickness bounds with depth constraints and a gradient
background, referred to as “wide‐depth‐gradient.”
[48] Figure 9 compares the estimated thickness of low‐

velocity zones for the above six cases. Although there are
quite uncertain because of different prior information used
for inversion, they all suggest there are low‐velocity zones
around location x = 50 m and x = 80 m. To obtain more
accurate estimates of aquifer geometry, the use of more
information is beneficial. Similarly, we analyze the effects
of other types parameters, for instance, the prior ranges of

three block velocity, and the prior ranges of the bias and the
standard deviation of measurement errors. The effects of
those parameters are less prominent.

5.2. Inversion Using Data From the S3 Survey Line

5.2.1. Survey Location and Geometry
[49] There are two survey profiles near the S3 pond. The

first profile has 63 sources, starting from x = 35 m with
increment of 2 m, and has 48 receivers, starting from x =
82 m with increment of 1 m. The second profile has 50 shot
sources, starting from x = 28mwith increment of 2m, and has
48 receivers, starting from x = 52 m with increment of 1 m.
We consider a rectangle inversion domain with a lateral
extent of 130 m from the south to the north and a vertical
extent of 25 m downward from the ground surface. For for-
ward simulation, we also use the same grid size for both
horizontal and vertical directions, which is equal to 0.25 m.
This gives us 520 grids along the lateral direction and
100 grids along the vertical direction.
5.2.2. Depth Constraints From Wellbores
and Prior Model From Other Information
[50] Many wellbores have been drilled near the S3 pond

survey lines in the past two decades. There are 22 wellbores

Figure 8. Uncertainty associated with inversion at the NT2 area for (a) interface locations and (b) thick-
ness of low‐velocity zones.
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within a horizontal distance of less than 5 m from the survey
line. However, among those wells, some are only a few feet
deep and thus provide no information on the interface
location and geometry of fast flow pathways. As shown in
Figure 2, seven wellbores (i.e., FW007–FW010, FW112,
FW117, and TPB25) are more than 10 ft deep and provide
depth of refusal information, which may reflect information
about rock competency and thus can be used to build prior
models.
[51] Some deeper wells exist near the middle of the seismic

survey line (Area 3 in Figure 2), within a vertical distance of
about 10m from the S3 survey line. At those wells, flowmeter
and slug test data are available, and crosswell seismic data
were also collected and inverted using joint stochastic
methods for aquifer zonation [Chen et al., 2006] as was
described in section 2.3. The inversion results showed that
there is a discrete, high hydraulic conductivity zone at depth,
which has a thickness ranging from 0.5 to 3 m. Compared to
large‐scale (order of 100 m) seismic refraction surveys, the
crosswell seismic surveys provide information of the aquifer

in the small scale (∼10 m). Such localized information also
provides constraints on the interface and thickness of aquifer
at the location near the middle of the survey line. The third
type of information available near the S3 pond survey line
is the inversion results using conventional methods [Watson
et al., 2005]. We build a background block velocity model
using such information, which is the same as given in
section 4 for synthetic case studies for joint inversion.
5.2.3. Inversion of Seismic Refraction Data
[52] Figure 10 shows a 2‐D seismic velocity calculated

from the estimated medians of unknown parameters, which
can be explained as an average of many individual realiza-
tions. Figure 10 shows the existence of a low‐velocity zone
in the middle of the profile from x = 40 m to x = 90 m at
depth around 15 m. These results are consistent with the
findings by Sheehan et al. [2005b] in the previous studies at
the site, who first suggested the presence of a low seismic
velocity zone at the ORNL. The jointly inverted data clearly
delineate the geometry of the low‐velocity zone.

Figure 10. Estimated velocity model along the S3 pond profile.

Figure 9. Effects of prior information on the estimates of thickness for the NT2 data set.
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[53] Similar to the case of NT2 inversion, the estimated
results shown in Figure 10 are also subject to uncertainty
because of the specification of the background block velocity
model and the prior distributions of unknown parameters.
However, at the Oak Ridge site, given the fact that we
have collected extensive information (see Figure 2) near
the S3 pond, we think that our background model and prior
distributions are reasonable.

5.3. Joint Interpretation of Seismic Refraction
Inversion Results

[54] Inversion of seismic refraction data at the NT2 and
S3 pond survey profiles suggests the presence of discrete
low‐velocity zones situated below the saprolite and above
the bedrock. Comparison of the inversion results (Figures 7
and 10) suggests that these zones are parallel to the strike
and about 40 m in length and 15 m in depth. Since the low‐
velocity zones are located at a similar location, this implies
that the low‐velocity zone is laterally persistent for at least
620 m from the source region down gradient. Our previous
seismic research at the site (Area 3 in Figure 2) demon-
strated a good correlation between low velocity and high
hydraulic conductivity zonation at the local scale [Chen
et et al., 2006]. Additionally, the location of the laterally
extensive zone is aligned well with the distribution of high
concentrations of the nitrate plume (see black arrow in
Figure 11). Together, these observations suggest that the
interpreted low‐velocity zone may serve as a preferential
pathway at this study site.

6. Discussion and Conclusions

[55] We developed a Bayesian model to invert seismic
refraction data with depth constraints offered by wellbore
data sets using finite difference numerical forward modeling
of seismic first arrival times and MCMC sampling methods.
We applied the method to both synthetic and field seismic
refraction data sets. Synthetic studies show that the developed
method can be used to estimate the interface and geometry of
low‐velocity zones under suitable constraints. The synthetic
studies also show that the depth constraints were important

for reducing uncertainty in estimation of interface and
geometry of aquifers.With the good depth constraints, we can
reduce the uncertainty significantly.
[56] We applied the developed method to two sets of

field data collected from the ORNL IFC site: one located
near the plume source zone and the other located 620 m down
gradient. Case studies on the NT2 survey profile show that
estimation of aquifer geometry using field data is more
challenging because many factors may affect the accuracy of
inversion results, such as prior ranges of interface locations
and thickness of low‐velocity zones. In that case, depth
constraints from wellbores become more important and the
use of wellbore information can help to significantly improve
the accuracy of the estimation.
[57] Although the data set near the S3 pond (i.e., source

area) had much more prior information from wellbores rela-
tive to the down‐gradient data set, both inversion revealed a
similar subsurface geometry. The inversion results show that
there is likely a low‐velocity zone located at the same
approximate depth below ground surface on the two profiles,
which implies that the low‐velocity zone is laterally persistent
for 620 m from the source region down gradient. The zone
is fairly extensive, with an average thickness of about 1.5 m
and width of about 40 m. Our previous seismic research at the
site demonstrated a good correlation between low velocity
and high hydraulic conductivity zonation at the local scale.
Additionally, the location of the laterally extensive zone is
surprisingly coincident with the (narrow and long) plume
distribution. These multiple lines of evidence all suggest that
the geophysically estimated subsurface geometry, which
contains a preferential flow path, plays a key role in transport
at the ORNL contaminated site. Future efforts will include
additional acquisition and inversion of surface seismic
refraction data at the study site, validation of the interpretation
through deep wellbore drilling, and the use of the geophysi-
cally obtained geometry to parameterize a site‐wide flow and
transport model.
[58] The current Bayesian method is computationally

intensive. For instance, for a problem, such as inversion of
seismic data along the NT2 profile with 55 sources, we need

Figure 11. Distribution of the nitrate plume at the Oak Ridge National Laboratory site.
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to run multiple chains for several days on a cluster with
55 CPUs, each CPU having a speed of 3.6 GHz. However,
because of the use of the staggered‐grid finite difference
numerical algorithm, we are able to calculate seismic refrac-
tion arrival time under complex subsurface environments
with high accuracy. With ever expanding computing power,
especially parallel computing techniques, computational lim-
itations are expected to continue to diminish.
[59] The developed Bayesian model is advantageous

because it allows us to parameterize the inverse problem in
terms of aquifer geometry (rather than seismic velocity, as is
the common approach), to simultaneously honor spatially
extensive (yet indirect) geophysical data and sparser but
direct wellbore “point” measurements, and to estimate asso-
ciated uncertainty of the estimated interface locations. This
method should be applicable in other shallow subsurface sites
where both surface seismic refraction and wellbore data sets
are available. Development of this methodology opens the
door for quantification of aquifer geometries over spatial
scales relevant to water resources and contaminant remedia-
tion efforts.
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